Ocellar optics in nocturnal and diurnal bees and wasps.

نویسندگان

  • Eric J Warrant
  • Almut Kelber
  • Rita Wallén
  • William T Wcislo
چکیده

Nocturnal bees, wasps and ants have considerably larger ocelli than their diurnal relatives, suggesting an active role in vision at night. In a first step to understanding what this role might be, the morphology and physiological optics of ocelli were investigated in three tropical rainforest species - the nocturnal sweat bee Megalopta genalis, the nocturnal paper wasp Apoica pallens and the diurnal paper wasp Polistes occidentalis - using hanging-drop techniques and standard histological methods. Ocellar image quality, in addition to lens focal length and back focal distance, was determined in all three species. During flight, the ocellar receptive fields of both nocturnal species are centred very dorsally, possibly in order to maximise sensitivity to the narrow dorsal field of light that enters through gaps in the rainforest canopy. Since all ocelli investigated had a slightly oval shape, images were found to be astigmatic: images formed by the major axis of the ocellus were located further from the proximal surface of the lens than images formed by the minor axis. Despite being astigmatic, images formed at either focal plane were reasonably sharp in all ocelli investigated. When compared to the position of the retina below the lens, measurements of back focal distance reveal that the ocelli of Megalopta are highly underfocused and unable to resolve spatial detail. This together with their very large and tightly packed rhabdoms suggests a role in making sensitive measurements of ambient light intensity. In contrast, the ocelli of the two wasps form images near the proximal boundary of the retina, suggesting the potential for modest resolving power. In light of these results, possible roles for ocelli in nocturnal bees and wasps are discussed, including the hypothesis that they might be involved in nocturnal homing and navigation, using two main cues: the spatial pattern of bright patches of daylight visible through the rainforest canopy, and compass information obtained from polarised skylight (from the setting sun or the moon) that penetrates these patches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee

BACKGROUND Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural a...

متن کامل

Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps.

In response to the pressures of predation, parasitism and competition for limited resources, several groups of (mainly) tropical bees and wasps have independently evolved a nocturnal lifestyle. Like their day-active (diurnal) relatives, these insects possess apposition compound eyes, a relatively light-insensitive eye design that is best suited to vision in bright light. Despite this, nocturnal...

متن کامل

Nocturnal Homing: Learning Walks in a Wandering Spider?

Homing by the nocturnal Namib Desert spider Leucorchestris arenicola (Araneae: Sparassidae) is comparable to homing in diurnal bees, wasps and ants in terms of path length and layout. The spiders' homing is based on vision but their basic navigational strategy is unclear. Diurnal homing insects use memorised views of their home in snapshot matching strategies. The insects learn the visual scene...

متن کامل

Hornets Can Fly at Night without Obvious Adaptations of Eyes and Ocelli

Hornets, the largest social wasps, have a reputation of being facultatively nocturnal. Here we confirm flight activity of hornet workers in dim twilight. We studied the eyes and ocelli of European hornets (Vespa crabro) and common wasps (Vespula vulgaris) with the goal to find the optical and anatomical adaptations that enable them to fly in dim light. Adaptations described for obligately noctu...

متن کامل

Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes?

Insects active in dim light, such as moths and many beetles, normally have superposition compound eyes to increase photon capture. But there are nocturnal and crepuscular insects - such as some species of bees, wasps and butterflies - that have apposition compound eyes. These are likely to have adaptations - including large eye and facet size and coarsened spatial and temporal resolution - that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arthropod structure & development

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2006